Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(1): 26, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287818

RESUMO

Vascular diseases are amongst the most serious diseases affecting human life and health globally. Energy metabolism plays a crucial role in multiple vascular diseases, and the imbalance of energy metabolism in cells from the blood vessel wall can cause various vascular diseases. Energy metabolism studies have often focused on atherosclerosis (AS) and pulmonary hypertension (PH). However, the roles of energy metabolism in the development of other vascular diseases is becoming increasingly appreciated as both dynamic and essential. This review summarizes the role of energy metabolism in various vascular diseases, including AS, hemangioma, aortic dissection, PH, vascular aging, and arterial embolism. It also discusses how energy metabolism participates in the pathophysiological processes of vascular diseases and potential drugs that may interfere with energy metabolism. This review presents suggestions for the clinical prevention and treatment of vascular diseases from the perspective of energy metabolism.


Assuntos
Hipertensão Pulmonar , Doenças Vasculares , Humanos , Metabolismo Energético , Doenças Vasculares/metabolismo , Hipertensão Pulmonar/metabolismo
2.
Eur J Pharmacol ; 966: 176352, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290567

RESUMO

BACKGROUND: Curcumin nicotinate (Curtn), derived from curcumin and niacin, reduces serum LDL-C levels, partly due to its influence on PCSK9. This study investigates IDOL's role in Curtn's lipid-lowering effects. OBJECTIVE: To elucidate Curtn's regulation of the IDOL/LDLR pathway and potential molecular mechanisms in hepatocytes. METHODS: Differential metabolites in Curtn-treated HepG2 cells were identified via LC-MS. Molecular docking assessed Curtn's affinity with IDOL. Cholesterol content and LDLR expression effects were studied in high-fat diet Wistar rats. In vitro evaluations determined Curtn's influence on IDOL overexpression's LDL-C uptake and LDLR expression in hepatocytes. RESULTS: Lipids were the main differential metabolites in Curtn-treated HepG2 cells. Docking showed Curtn's higher affinity to IDOL's FERM domain compared to curcumin, suggesting potential competitive inhibition of IDOL's binding to LDLR. Curtn decreased liver cholesterol in Wistar rats and elevated LDLR expression. During in vitro experiments, Curtn significantly enhanced the effects of IDOL overexpression in HepG2 cells, leading to increased LDL-C uptake and elevated expression of LDL receptors. CONCLUSION: Curtn modulates the IDOL/LDLR pathway, enhancing LDL cholesterol uptake in hepatocytes. Combined with its PCSK9 influence, Curtn emerges as a potential hyperlipidemia therapy.


Assuntos
Curcumina , Curcumina/análogos & derivados , Niacina/análogos & derivados , Pró-Proteína Convertase 9 , Ratos , Animais , LDL-Colesterol , Curcumina/farmacologia , Ratos Wistar , Simulação de Acoplamento Molecular , Ubiquitina-Proteína Ligases/metabolismo , Hepatócitos/metabolismo , Receptores de LDL/metabolismo , Colesterol , Lipoproteínas LDL/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894840

RESUMO

Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Senescência Celular/fisiologia , Aterosclerose/metabolismo , Estresse Oxidativo , Transdução de Sinais
4.
Heliyon ; 9(8): e18471, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560666

RESUMO

Background: Intracranial teratomas or other cystic lesions with atypical imaging manifestations can still be frequently seen clinically. The specific reasons for unusual imaging manifestations need to be further explored. Observations: A case of adult teratoma in the posterior fossa with unusual imaging manifestations was reported. The chemical composition of its cystic fluid was quantitatively detected, and in vitro imaging simulation experiments were performed on some fluid substances with similar cystic fluid properties to explore the reasons for special imaging manifestations. The content of inorganic substances and protein in the cystic fluid were both low, with no melanin detected. In vitro experiments revealed that MR T1 signals could increase with protein content rising and changes in MR T2 signals presented no obvious correlation with it. CT values increased gradually with protein concentration rising. The substances with similar viscosity had similar CT values, whereas substance viscosity showed no significant correlation with changes in MR signals. Conclusion: The abnormality of imaging manifestations cannot be confirmed as the result of "high protein content", nor can it be simply attributed to bleeding. Further research is required for the impact of the combination of paramagnetic particles and biofluid on imaging.

5.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2781-2791, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282938

RESUMO

Rosae Radix et Rhizoma is a herbal medicine in a variety of famous Chinese patent medicines, while the quality standard for this medicine remains to be developed due to the insufficient research on the quality of Rosae Radix et Rhizoma from different sources. Therefore, this study comprehensively analyzed the components in Rosae Radix et Rhizoma of different sources from the aspects of extract, component category content, identification based on thin-lay chromatography, active component content determination, and fingerprint, so as to improve the quality control. The results showed that the content of chemical components varied in the samples of different sources, while there was little difference in the chemical composition among the samples. The content of components in the roots of Rosa laevigata was higher than that in the other two species, and the content of components in the roots was higher than that in the stems. The fingerprints of triterpenoids and non-triterpenoids were established, and the content of five main triterpenoids including multiflorin, rosamultin, myrianthic acid, rosolic acid, and tormentic acid in Rosae Radix et Rhizoma was determined. The results were consistent with those of major component categories. In conclusion, the quality of Rosae Radix et Rhizoma is associated with the plant species, producing area, and medicinal parts. The method established in this study lays a foundation for improving the quality standard of Rosae Radix et Rhizoma and provides data support for the rational use of the stem.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Medicamentos de Ervas Chinesas/química , Rizoma/química , Raízes de Plantas/química , Controle de Qualidade
6.
Front Biosci (Landmark Ed) ; 27(11): 299, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36472099

RESUMO

BACKGROUND: To investigate the effect and potential molecular mechanisms of Dipsacoside B (DB), an herb monomer extracted from Dipsacusasper or Lonicera macranthoides, on the migration and proliferation of vascular smooth muscle cells (VSMCs) and balloon-induced neointimal formation. METHODS: In vivo, rat abdominal aorta balloon injury model was utilized to investigate the effect of DB on the neointimal formation. In vitro, cultured VSMCs were used to investigate the effect of DB on Angiotensin-II (Ang-II)-induced migration and proliferation of VSMCs. Western blot and immunofluorescence were used to measure PTEN expression. RESULTS: As compared to vehicle control balloon-injury group, DB treatment significantly inhibited the neointimal formation together up-regulated the expression of phosphatase and tension homolog deleted on chromosome 10 (PTEN). Cell proliferations (MTT and Edu incorporation) assays and wound migration measurement further revealed that treatment with DB significantly blunted Ang-II-induced proliferation and migration potential of VSMCs. Western blot analysis exhibited that DB upregulated the expression of PTEN in vivo and in vitro. CONCLUSIONS: DB treatment suppresses the proliferation and migration of VSMCs and reduces neointimal formation by the mechanisms involving regulating the phenotype switch of VSMCs via upregulating PTEN expression.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Ratos , Animais , Movimento Celular , Neointima/metabolismo , Proliferação de Células , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Células Cultivadas , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
7.
Heliyon ; 8(11): e11183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36345524

RESUMO

Prunella vulgaris L.(P. vulgaris) is a perennial herb belonging to the Labiate family and widely distributed in China, Japan, Korea and Europe. Medical monographs and previous studies have shown that P. vulgaris has significant anti-breast cancer activity, and its use in breast treatment has a long history. However, systematically reports about the material basis and mechanism of P. vulgaris on anti-breast cancer activity are limited. In the present study, we first screened the best active fraction from the crude extract (PVE) and ethanol eluted fractions of P. vulgaris by using MDA-MB-231, MCF-7, 4T1 cell models in vitro and a 4T1-BALB/c transplanted tumour mouse breast cancer model in vivo. Furthermore, the anti-breast cancer mechanism of the best active fraction was investigated. The results demonstrated that PVE and ethanol fractions exhibited anti-breast cancer activity, especially with the 50% ethanol eluted fraction (PV50), which effectively regulated the 4T1 cell cycle, inhibited tumour cell proliferation, and promoted cancer cell apoptosis. In case of in vivo assays, PV50 inhibited tumour growth and lung metastasis, as well as inducing cell apoptosis by promoting damage of nuclear DNA and increasing expression of cleaved caspase-3. In addition, the chemical compositions of PV50 were analyzed by HPLC and UPLC-MS/MS, which were identified as flavonoids, moderately polar triterpenes, and a small amount of phenolic acid. The PV50 could be applied as natural sources against breast cancer in the pharmaceutical industry. These findings provide a basis for understanding the mechanism of the anti-breast cancer activity of P. vulgaris.

8.
Front Pharmacol ; 13: 960140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304153

RESUMO

In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1ß, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.

9.
Fitoterapia ; 163: 105334, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36272703

RESUMO

Prunella vulgaris L. (P. vulgaris, Labiatae) is a perennial medicinal and edible plant widely used in China, Korea, Japan and Europe. The reddish brown spica of P. vulgaris (Prunellae Spica), which is collected in summer, has been commonly used in traditional medicine and food industry, while it is also used with whole grass in Europe and Taiwan. To clarify the regulatory pathways and mechanism of quality formation in P. vulgaris, targeted metabolomic, transcriptomic, and proteomic analyses of Prunellae Spica samples from five consecutive developmental stages were carried out. The results showed that terpenoids were mainly synthesized in the maturity stage of Prunellae Spica, with the key enzymes and coding genes in downstream pathways being mainly expressed during ripening, while related enzymes in the upstream pathway showed the opposite pattern. Flavonoids mainly accumulated before ripening, with highly expressed pathway enzymes and coding genes. The accumulation of phenylpropanoids was relatively active throughout the development process. Rosmarinic acid (RA) and its synthetic intermediate products mainly accumulated via more active pathway enzymes and coding genes before ripening. The regulatory factors and metabolites related to RA synthesis were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant pathogen interaction, oxidative phosphorylation, and endoplasmic reticulum protein processing pathways.


Assuntos
Prunella , Prunella/metabolismo , Proteômica , Metabolismo Secundário , Transcriptoma , Estrutura Molecular , Ácido Rosmarínico
10.
Folia Histochem Cytobiol ; 60(3): 271-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177743

RESUMO

INTRODUCTION: Abnormal proliferation of vascular smooth muscle cells (VSMCs) can cause various vascular diseases, such as atherosclerosis, restenosis, and pulmonary hypertension. However, the effect and underlying mechanism of Wnt5a on the proliferation of VSMCs remain unclear. Our study aimed to investigate whether Wnt5a/Ror2 promotes vascular smooth muscle cell proliferation via activating protein kinase C (PKC), thereby effectively alleviating vascular proliferative diseases. MATERIAL AND METHODS: The proliferation of HA-VSMC cell line was evaluated by CCK-8, EdU, and Plate clone formation assays. The Wnt5a gene knockdown and overexpression were carried out by standard methods. The interaction between Wnt5a and Ror2 was explored by co-immunoprecipitation. Western blotting and immunofluorescence were used to determine the expression levels of key proteins in VSMCs. RESULTS: The present study found that the expression of Wnt5a protein increased significantly in the proliferation of VSMCs stimulated by 10% serum in a time-dependent manner. Furthermore, the proliferative rate of VSMCs overexpressing Wnt5a was dramatically accelerated, whereas Wnt5a knockdown using siWnt5a reversed thisproliferative effect. Wnt5a up-regulated the expression of receptor tyrosine kinase-like orphan receptor 2 (Ror2) by binding to it. Further studies indicated that Wnt5a induces the PKC expression in VSMCs and knockdown of Wnt5a or Ror2 could inhibit PKC phosphorylation. CONCLUSIONS: Wnt5a could effectively promote the proliferation of VSMCs, which might be related to the binding of Wnt5a and Ror2 to activate PKC.


Assuntos
Músculo Liso Vascular , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Quinase C/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Sincalida/metabolismo , Proteína Wnt-5a/metabolismo
11.
Eur J Pharmacol ; 931: 175195, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964656

RESUMO

Curcumin nicotinate (Curtn) is a synthesized ester derivative of curcumin and niacin. Our previous study has shown that Curtn lowers serum low-density lipoprotein cholesterol (LDL-C) levels in apoE-/- mice and promotes LDL-C uptake into HepG2 cells in vitro. The present study was to test the hypothesis that Curtn decreases serum LDL-C levels through decreased expression of pro-protein convertase subtilisin/kexin type 9 (PCSK9) and subsequent increase in LDL receptor expression. Male Wistar rats on high-fat diet (HFD) were treated with Curtn or rosuvastatin. Curtn or rosuvastatin treatment significantly decreased serum levels of total cholesterol (TC) and LDL-C in rats on HFD with increased liver LDL receptor expression. LDL-C-lowering effect of Curtn was not observed in LDL receptor deficient (LDLR-/-) mice on HFD, while rosuvastatin still decreased serum lipid levels in LDLR-/- mice, indicating that the reduction of serum LDL-C levels by Curtn treatment was LDL receptor-dependent. Curtn treatment also significantly decreased the protein expression of PCSK9 in Wistar rats and LDLR-/- mice. In HepG2 cells with overexpression of human PCSK9, Curtn treatment significantly increased LDL-C uptakes into hepatocytes, and increased LDL receptor distribution on cell surface in association with decreased PCSK9 protein expression. RNAi-LDLR significantly attenuated the effect of Curtn on LDLR distribution on cell surface. These data indicates that Curtn would decrease serum LDL-C level at least partially through inhibition of PCSK9 expression, and subsequent increase in LDL receptor expression and distribution in hepatocytes, serving as a potential novel compound to treat hyperlipidemia.


Assuntos
Curcumina , Pró-Proteína Convertase 9 , Animais , LDL-Colesterol , Curcumina/análogos & derivados , Curcumina/farmacologia , Curcumina/uso terapêutico , Células Hep G2 , Humanos , Masculino , Camundongos , Niacina/análogos & derivados , Pró-Proteína Convertase 9/genética , Ratos , Ratos Wistar , Receptores de LDL/genética , Receptores de LDL/metabolismo , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Serina Endopeptidases/metabolismo
12.
Front Pharmacol ; 13: 831657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924044

RESUMO

The high level of serum cholesterol caused by the excessive absorption of cholesterol can lead to hypercholesteremia, thus promoting the occurrence and development of cancer. Ezetimibe is a drug that reduces cholesterol absorption and has been widely used for the treatment of patients with high circulating cholesterol levels for many years. Mechanistically, ezetimibe works by binding to NPC1L1, which is a key mediator of cholesterol absorption. Accumulating data from preclinical models have shown that ezetimibe alone could inhibit the development and progression of cancer through a variety of mechanisms, including anti-angiogenesis, stem cell suppression, anti-inflammation, immune enhancement and anti-proliferation. In the past decade, there has been heated discussion on whether ezetimibe combined with statins will increase the risk of cancer. At present, more and more evidence shows that ezetimibe does not increase the risk of cancers, which supports the role of ezetimibe in anti-cancer. In this review, we discussed the latest progress in the anti-cancer properties of ezetimibe and elucidated its underlying molecular mechanisms. Finally, we highlighted the potential of ezetimibe as a therapeutic agent in future cancer treatment and prevention.

13.
Aging Dis ; 13(4): 1042-1055, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35855333

RESUMO

With the rapid aging in the global population, delay of aging has become a hot research topic. Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their component signaling molecules have been recognized to affect aging by interfering with its hallmarks. Therefore, targeting LRs is a promising strategy to delay aging.

14.
J Neuroinflammation ; 19(1): 186, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836182

RESUMO

BACKGROUND: Depression is a recurrent and devastating mental disease that is highly prevalent worldwide. Prolonged exposure to stressful events or a stressful environment is detrimental to mental health. In recent years, an inflammatory hypothesis has been implicated in the pathogenesis of stress-induced depression. However, less attention has been given to the initial phases, when a series of stress reactions and immune responses are initiated. Peripheral CD4+ T cells have been reported as the major contributors to the occurrence of mental disorders. Chronic stress exposure-evoked release of cytokines can promote the differentiation of peripheral CD4+ cells into various phenotypes. Among them, Th17 cells have attracted much attention due to their high pathogenic potential in central nervous system (CNS) diseases. Thus, we intended to determine the crucial role of CD4+ Th17 cells in the development of specific subtypes of depression and unravel the underpinnings of their pathogenetic effect. METHODS: In the present research, a daily 6-h restraint stress paradigm was employed in rats for 28 successive days to mimic the repeated mild and predictable, but inevitable environmental stress in our daily lives. Then, depressive-like symptoms, brain-blood barrier (BBB) permeability, neuroinflammation, and the differentiation and functional changes of CD4+ cells were investigated. RESULTS: We noticed that restrained rats showed significant depressive-like symptoms, concomitant BBB disruption and neuroinflammation in the dorsal striatum (DS). We further observed a time-dependent increase in thymus- and spleen-derived naïve CD4+ T cells, as well as the aggregation of inflammatory Th17 cells in the DS during the period of chronic restraint stress (CRS) exposure. Moreover, increased Th17-derived cytokines in the brain can further impair the BBB integrity, thus allowing more immune cells and cytokines to gain easy access to the CNS. Our findings suggested that, through a complex cascade of events, peripheral immune responses were propagated to the CNS, and gradually exacerbated depressive-like symptoms. Furthermore, inhibiting the differentiation and function of CD4+ T cells with SR1001 in the early stages of CRS exposure ameliorated CRS-induced depressive-like behaviour and the inflammatory response. CONCLUSIONS: Our data demonstrated that inflammatory Th17 cells were pivotal in accelerating the onset and exacerbation of depressive symptoms in CRS-exposed rats. This subtype of CD4+ T cells may be a promising therapeutic target for the early treatment of stress-induced depression.


Assuntos
Depressão , Células Th17 , Animais , Encéfalo , Citocinas , Depressão/etiologia , Humanos , Ratos , Restrição Física , Células Th1
15.
Cell Oncol (Dordr) ; 45(5): 709-728, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35864437

RESUMO

BACKGROUND: Disturbance of cholesterol homeostasis is considered as one of the manifestations of cancer. Cholesterol plays an essential role in the pleiotropic functions of cancer cells, including mediating membrane trafficking, intracellular signal transduction, and production of hormones and steroids. As a single transmembrane receptor, the low-density lipoprotein receptor (LDLR) can participate in intracellular cholesterol uptake and regulate cholesterol homeostasis. It has recently been found that LDLR is aberrantly expressed in a broad range of cancers, including colon cancer, prostate cancer, lung cancer, breast cancer and liver cancer. LDLR has also been found to be involved in various signaling pathways, such as the MAPK, NF-κB and PI3K/Akt signaling pathways, which affect cancer cells and their surrounding microenvironment. Moreover, LDLR may serve as an independent prognostic factor for lung cancer, breast cancer and pancreatic cancer, and is closely related to the survival of cancer patients. However, the role of LDLR in some cancers, such as prostate cancer, remains controversial. This may be due to the lack of normal feedback regulation of LDLR expression in cancer cells and the severe imbalance between LDLR-mediated cholesterol uptake and de novo biosynthesis of cholesterol. CONCLUSIONS: The imbalance of cholesterol homeostasis caused by abnormal LDLR expression provides new therapeutic opportunities for cancer. LDLR interferes with the occurrence and development of cancer by modulating cholesterol homeostasis and may become a novel target for the development of anti-cancer drugs. Herein, we systematically review the contribution of LDLR to cancer progression, especially its dysregulation and underlying mechanism in various malignancies. Besides, potential targeting and immunotherapeutic options are proposed.


Assuntos
Colesterol , Neoplasias , Humanos , Colesterol/metabolismo , Homeostase , Hormônios , Lipoproteínas LDL/metabolismo , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Microambiente Tumoral , Neoplasias/metabolismo
16.
Mol Metab ; 63: 101529, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714911

RESUMO

BACKGROUND: Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW: We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS: The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Morte Celular , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Lipogênese , Neoplasias/metabolismo , Microambiente Tumoral
17.
J Med Microbiol ; 71(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35580023

RESUMO

Introduction. Atherosclerosis is a chronic disorder in which plaque builds up in the arteries and is associated with several cardiovascular and cerebrovascular diseases such as coronary artery disease, cerebral infarction and cerebral haemorrhage. Therefore, there is an urgent need to discover new medications to treat or prevent atherosclerosis.Hypothesis/Gap Statement. The active components of Guanxin Xiaoban capsules may have an effect on the gut microbiome of patients with atherosclerosis and have a role in their therapeutic targets.Aim. The aim of this study was to identify genes and pathways targeted by active ingredients in Guanxin Xiaoban capsules for the treatment of atherosclerosis based on network pharmacology and analysis of changes to the gut microbiome.Methods. Mice were treated with Guanxin Xiaoban capsules. The 16S rDNA genome sequence of all microorganisms from each group of faecal samples was used to evaluate potential structural changes in the gut microbiota after treatment with Guanxin Xiaoban capsules. Western blotting and real-time quantitative PCR were used to detect gene targets in aortic and liver tissues. Haematoxylin and eosin staining was used to observe improvements in mouse arterial plaques.Results. The gut microbiota of atherosclerotic mice is disturbed. After Guanxin Xiaoban treatment, the abundance of bacteria in the mice improved, with an increase in the proportion of Akkermansia and a significant decrease in the proportion of Faecalibaculum. The main ingredients of Guanxin Xiaoban capsules are calycosin, liquiritin, ferulic acid, ammonium glycyrrhizate, aloe emodin, rhein and emodin. The core genes of this network were determined to be glutathione S-transferase mu 1 (GSTM1), vascular endothelial growth factor A (VEGFA) and cyclin-dependent kinase inhibitor 1A (CDKN1A). The compound-target gene network revealed an interaction between multiple components and targets and contributed to a better understanding of the potential therapeutic effects of the capsules on atherosclerosis. In addition, expression of the AGE-receptor for the AGE (RAGE) pathway was significantly inhibited and the mice showed signs of arterial plaque reduction. Guanxin Xiaoban capsules may improve atherosclerosis and reduce the plaque area by inhibiting the AGE-RAGE signalling pathway to delay the development of atherosclerosis. This mechanism appears to involve changes in the gut microbiota. Therefore, Guanxin Xiaoban capsules have potential value as a treatment for atherosclerosis.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Placa Aterosclerótica , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/microbiologia , Aterosclerose/patologia , Cápsulas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/microbiologia , Placa Aterosclerótica/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Front Oncol ; 12: 803473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251975

RESUMO

Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in the rapid growth of cancer cells as well as the formation of metastatic lesions. Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer, colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and ox-LDL play important roles during the occurrence and development of cancers. LDL can deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-binding proteins (SREBPs), which subsequently promotes cholesterol uptake and synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer. Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential therapeutic effect of targeting lipid metabolism in cancer therapy warrants more investigation.

19.
Nat Prod Res ; 36(1): 8-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32525748

RESUMO

Kadsura heteroclita Roxb. Craib. (Schisandraceae), is a vine plant mainly distributed in southwest part of China. A new dibenzocyclooctadiene lignan, kadsulignan W (1), along with eleven known lignans (2-12) were isolated from chloroform soluble fraction of stems of Kadsura heteroclita. The structure of new lignan was elucidated by extensive spectroscopic techniques, namely one- and two-dimensional NMR spectroscopy, and HRESI-MS analysis. The absolute configuration of the biphenyl ring in the new dibenzocyclooctadiene lignan was discerned by circular dichroism (CD) spectroscopy. Antioxidative effects of these compounds were evaluated on human isolated neutrophils, and compounds 5, 8, 9, and 10 were found to be strongly active with the IC50 of 36.68, 34.41, 35.97, and 33.65 µM, respectively. Furthermore, compound 8 was also found to be cytotoxic against human gastric cancer cells (BGC 823), and human cervical cancer cell lines (HeLa) with the IC50 values of 11.0, and 23.8 µM, respectively.


Assuntos
Kadsura , Lignanas , Ciclo-Octanos , Humanos , Estrutura Molecular , Caules de Planta
20.
J Pharm Biomed Anal ; 209: 114532, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34953415

RESUMO

Metabolomics is applied to explore the curative effect of complex systems, such as Chinese medicine. Intrauterine adhesion (IUA) harms the reproductive system and affects fertility, and hence is a significant public health concern. Prunella vulgaris oil (PVO) protects the reproductive system and exerts anti-inflammatory effects, but its effect on IUA and the underlying mechanism is unclear. In this study, we established a serum metabolomics method based on GC-TOF-MS to evaluate the mechanism of PVO in the IUA rat model established by mechanical injury and infection. Animal experiments showed that PVO improves the inflammatory response in the uterus of IUA model rats and reduces the content of inflammatory factors to improve the microenvironment of the reproductive system. It also regulates the expression of TGF-ß1 and Smad-related mRNA and protein to inhibit fibrosis. Metabolomics indicated a significant abnormality in serum metabolism in IUA rats, and a total of 51 differential markers were screened and identified. After PVO treatment, these metabolic abnormalities improved significantly. The metabolic pathway analysis revealed that PVO affects glyoxylate and dicarboxylate metabolism, and ß-alanine metabolism pathways. This study showed that PVO significantly improves inflammation and fibrosis in IUA rats combined with the pharmacological results. The primary mechanism is related to regulating the metabolism of amino acids and their derivatives to balance the associated disorders and control energy metabolism.


Assuntos
Prunella , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Inflamação , Metabolômica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...